Dual functions of phospholipase Dalpha1 in plant response to drought.
نویسندگان
چکیده
Phospholipase Dalpha1 (PLDalpha1) has been shown to mediate the abscisic acid regulation of stomatal movements. Arabidopsis plants deficient in PLDalpha1 increased, whereas PLDalpha1-overexpressing tobacco decreased, transpirational water loss. In the early stage of drought, the decrease in water loss was associated with a rapid stomatal closure caused by a high level of PLD in PLDalpha1-overexpressing plants. However, in the late stage of drought, the overexpressing plants displayed more susceptibility to drought than control plants. PLDalpha1 activity in the overexpressing plants was much higher than that of control plants in which drought also induced an increase in PLDalpha1 activity. The high level of PLDalpha1 activity was correlated to membrane degradation in late stages of drought, as demonstrated by ionic leakage and lipid peroxidation. These findings indicate that a high level of PLDalpha1 expression has different effects on plant response to water deficits. It promotes stomatal closure at earlier stages, but disrupts membranes in prolonged drought stress. These findings are discussed in relation to the understanding of PLD functions and potential applications.
منابع مشابه
Phospholipase dalpha1 and phosphatidic acid regulate NADPH oxidase activity and production of reactive oxygen species in ABA-mediated stomatal closure in Arabidopsis.
We determined the role of Phospholipase Dalpha1 (PLDalpha1) and its lipid product phosphatidic acid (PA) in abscisic acid (ABA)-induced production of reactive oxygen species (ROS) in Arabidopsis thaliana guard cells. The pldalpha1 mutant failed to produce ROS in guard cells in response to ABA. ABA stimulated NADPH oxidase activity in wild-type guard cells but not in pldalpha1 cells, whereas PA ...
متن کاملIsolation of Brassica napus MYC2 gene and analysis of its expression in response to water deficit stress
Manipulation of stress related transcription factors to improve plant stress tolerance is a major goal of current biotechnology researches. MYC2 gene encodes a key stress-related transcription factor involved in Jasmonate (JA) and abscisic acid (ABA) signaling pathways in Arabidopsis. Brassica napus, as a globally important oilseed crop, is a close relative of Arabidopsis. In the present study...
متن کاملAgronomic and Photosynthetic Characteristics of Different Maize Hybrids in Response to Water Deficit Stress at Different Phenological Stages
The aim of present study was to evaluate the effects of drought stress on net photosynthesis rate (Pn), stomatal resistance, water use efficiency (WUE) and biomass (BM) of six maize (Zea mays L.) hybrids. Drought stress applied by withholding water supply at 4-5 leaf stage (S1, vegetative stage), anthesis (S2, reproductive stage), and dual stress condition (S3, combination of vegetative and rep...
متن کاملEvaluation of yield of promising dual purpose grain- forage sorghum lines (Sorghum bicolor L. Moench) using drought tolerance indices
To evaluate and select the promising lines of dual purpose grain-forage sorghum under drought stress conditions, a field experiment assplit plot arrangements in randomized complete block design with three replications was carried out atresearch field station of Seed and Plant Improvement Research Institute, Karaj, Iran, in 2014 and 2015 growing seasons. Irrigation levels (60 mm, 120 mm and 180 ...
متن کاملIdentification and Functional Prediction of Long Non-Coding RNAs Responsive to Drought stress in Lens culinaris L.
Drought stress is one of the main environmental factors that affects growth and productivity of crop plants, including lentil. In the course of evolution evolution, crucial genetic regulations mediated by non-coding RNAs (ncRNAs) have emerged in plant in response to drought and other abiotic stresses. In the present study, after identifying lncRNAs within the expression profile of lentil, RNA-s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular plant
دوره 1 2 شماره
صفحات -
تاریخ انتشار 2008